Problem C. 吃糖果游戏

时间限制 1000 ms
内存限制 128 MB

题目描述

  Matrix67和Shadow正在做一个小游戏。
  桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作。在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆(可以不相等)留给对方操作。游戏如此进行下去,糖果数会越来越少,最后必将出现这样一种情况:某人吃掉一堆糖果后发现另一堆里只剩一块糖果不能再分了。游戏规定此时该操作者吃掉最后这一块糖果从而取胜。
  这个游戏是不公平的。对于任意一种初始状态,总有一方有必胜策略。所谓有必胜策略是指,无论对方如何操作,自己总有办法取胜。
  Matrix67和Shadow将进行10次游戏,每一次游戏中总是Matrix67先进行操作。Matrix67想知道每一次游戏中谁有必胜策略。

输入数据

  输入数据一共 $10$ 行,每行有两个用空格隔开的正整数,表示一次游戏开始时桌子上两堆糖果分别有多少个。
  对于 $50%$ 的数据,这些正整数均不超过100;
  对于 $70%$ 的数据,这些正整数均不超过 $10 000; $
  对于100%的数据,这些正整数均不超过 $10 000$ 位。

输出数据

  输出十行字符串。这些字符串只能是“Matrix67”或“Shadow”,它们表示对应的十行输入数据中有必胜策略的一方。
  请注意大小写。

样例输入

1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5

样例输出

Matrix67
Matrix67
Matrix67
Matrix67
Matrix67
Matrix67
Shadow
Shadow
Matrix67
Matrix67